Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698206

RESUMEN

TRP ion channels are modulated by phosphoinositide lipids, but the underlying structural mechanisms remain unclear. The capsaicin- and heat-activated receptor, TRPV1, has served as a model for deciphering lipid modulation, which is relevant to understanding how pro-algesic agents enhance channel activity in the setting of inflammatory pain. Identification of a pocket within the TRPV1 transmembrane core has provided initial clues as to how phosphoinositide lipids bind to and regulate the channel. Here we show that this regulatory pocket in rat TRPV1 can accommodate diverse lipid species, including the inflammatory lipid lysophosphatidic acid, whose actions are determined by their specific modes of binding. Furthermore, we show that an empty-pocket channel lacking an endogenous phosphoinositide lipid assumes an agonist-like state, even at low temperature, substantiating the concept that phosphoinositide lipids serve as negative TRPV1 modulators whose ejection from the binding pocket is a critical step toward activation by thermal or chemical stimuli.

2.
Science ; 384(6693): 295-301, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669574

RESUMEN

Airway neuroendocrine (NE) cells have been proposed to serve as specialized sensory epithelial cells that modulate respiratory behavior by communicating with nearby nerve endings. However, their functional properties and physiological roles in the healthy lung, trachea, and larynx remain largely unknown. In this work, we show that murine NE cells in these compartments have distinct biophysical properties but share sensitivity to two commonly aspirated noxious stimuli, water and acid. Moreover, we found that tracheal and laryngeal NE cells protect the airways by releasing adenosine 5'-triphosphate (ATP) to activate purinoreceptive sensory neurons that initiate swallowing and expiratory reflexes. Our work uncovers the broad molecular and biophysical diversity of NE cells across the airways and reveals mechanisms by which these specialized excitable cells serve as sentinels for activating protective responses.


Asunto(s)
Adenosina Trifosfato , Laringe , Células Neuroendocrinas , Reflejo , Tráquea , Animales , Ratones , Células Neuroendocrinas/metabolismo , Laringe/fisiología , Adenosina Trifosfato/metabolismo , Reflejo/fisiología , Tráquea/inervación , Tráquea/citología , Deglución , Pulmón/fisiología , Espiración/fisiología , Agua/metabolismo , Células Receptoras Sensoriales/fisiología , Ratones Endogámicos C57BL
3.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38370814

RESUMEN

The crypt-villus structure of the small intestine serves as an essential protective barrier, with its integrity monitored by the gut's sensory system. Enterochromaffin (EC) cells, which are rare sensory epithelial cells that release serotonin (5-HT), surveil the mucosal environment and signal both within and outside the gut. However, it remains unclear whether EC cells in intestinal crypts and villi respond to different stimuli and elicit distinct responses. In this study, we introduce a new reporter mouse model to observe the release and propagation of serotonin in live intestines. Using this system, we show that crypt EC cells exhibit two modes of serotonin release: transient receptor potential A1 (TRPA1)-dependent tonic serotonin release that controls basal ionic secretion, and irritant-evoked serotonin release that activates gut sensory neurons. Furthermore, we find that a thick protective mucus layer prevents TRPA1 receptors on crypt EC cells from responding to luminal irritants such as reactive electrophiles; if this mucus layer is compromised, then crypt EC cells become susceptible to activation by luminal irritants. On the other hand, villus EC cells detect oxidative stress through TRPM2 channels and co-release serotonin and ATP to activate nearby gut sensory fibers. Our work highlights the physiological importance of intestinal architecture and differential TRP channel expression in sensing noxious stimuli that elicit nausea and/or pain sensations in the gut.

4.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292745

RESUMEN

TRP ion channels are modulated by phosphoinositide lipids, but the underlying structural mechanisms remain unclear. The capsaicin- and heat-activated receptor, TRPV1, has served as a model for deciphering lipid modulation, which is relevant to understanding how pro-algesic agents enhance channel activity in the setting of inflammatory pain. Identification of a pocket within the TRPV1 transmembrane core has provided initial clues as to how phosphoinositide lipids bind to and regulate the channel. Here we show that this regulatory pocket can accommodate diverse lipid species, including the inflammatory lipid lysophosphatidic acid (LPA), whose actions are determined by their specific modes of binding. Furthermore, we show that an 'empty pocket' channel lacking an endogenous phosphoinositide lipid assumes an agonist-like state, even at low temperature, substantiating the concept that phosphoinositide lipids serve as negative TRPV1 modulators whose ejection from the binding pocket is a critical step towards activation by thermal or chemical stimuli.

5.
Nature ; 616(7955): 137-142, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949192

RESUMEN

Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.


Asunto(s)
Ansiedad , Células Enterocromafines , Dolor Visceral , Femenino , Humanos , Masculino , Ansiedad/complicaciones , Ansiedad/fisiopatología , Sistema Digestivo/inervación , Sistema Digestivo/fisiopatología , Células Enterocromafines/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/fisiopatología , Síndrome del Colon Irritable/psicología , Caracteres Sexuales , Dolor Visceral/complicaciones , Dolor Visceral/fisiopatología , Dolor Visceral/psicología , Inflamación/complicaciones , Inflamación/fisiopatología , Serotonina/metabolismo , Reproducibilidad de los Resultados
6.
STAR Protoc ; 3(4): 101732, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36181684

RESUMEN

Capturing conformational snapshots by single-particle cryo-EM facilitates the analysis of ligand binding and activation mechanisms for ion channels and other receptor complexes. Here, we present a protocol to capture intermediate states of nanodisc-reconstituted TRPV1. This protocol covers sample preparation, data acquisition, and image processing with focuses on the symmetry expansion and focused 3D classification. This protocol can be adapted to different proteins and samples. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).


Asunto(s)
Canales Iónicos Activados por Ligandos , Microscopía por Crioelectrón/métodos , Proteínas , Conformación Molecular , Procesamiento de Imagen Asistido por Computador/métodos
7.
Elife ; 112022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35968676

RESUMEN

TRPV1, a capsaicin- and heat-activated ion channel, is expressed by peripheral nociceptors and has been implicated in various inflammatory and neuropathic pain conditions. Although pharmacological modulation of TRPV1 has attracted therapeutic interest, many TRPV1 agonists and antagonists produce thermomodulatory side effects in animal models and human clinical trials, limiting their utility. These on-target effects may result from the perturbation of TRPV1 receptors on nociceptors, which transduce signals to central thermoregulatory circuits and release proinflammatory factors from their peripheral terminals, most notably the potent vasodilative neuropeptide, calcitonin gene-related peptide (CGRP). Alternatively, these body temperature effects may originate from the modulation of TRPV1 on vascular smooth muscle cells (vSMCs), where channel activation promotes arteriole constriction. Here, we ask which of these pathways is most responsible for the body temperature perturbations elicited by TRPV1 drugs in vivo. We address this question by selectively eliminating TRPV1 expression in sensory neurons or vSMCs and show that only the former abrogates agonist-induced hypothermia and antagonist-induced hyperthermia. Furthermore, lesioning the central projections of TRPV1-positive sensory nerve fibers also abrogates drug-mediated thermomodulation, whereas eliminating CGRP has no effect. Thus, TRPV1 drugs alter core body temperature by modulating sensory input to the central nervous system, rather than through peripheral actions on the vasculature. These findings suggest how mechanistically distinct TRPV1 antagonists may diminish inflammatory pain without affecting core body temperature.


Asunto(s)
Temperatura Corporal , Neuralgia , Animales , Péptido Relacionado con Gen de Calcitonina , Capsaicina/farmacología , Humanos , Células Receptoras Sensoriales , Canales Catiónicos TRPV
8.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287474

RESUMEN

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Microscopía por Crioelectrón , Transducción de Señal , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
9.
Cell ; 184(20): 5138-5150.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496225

RESUMEN

Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.


Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Regulación Alostérica , Permeabilidad de la Membrana Celular/efectos de los fármacos , Microscopía por Crioelectrón , Diterpenos/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico , Lípidos/química , Meglumina/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Protones , Canales Catiónicos TRPV/agonistas
10.
Materials (Basel) ; 14(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810373

RESUMEN

This study proposes a hydrophobic and hydrophilic aliphatic diblock copolymer wherein the hydrophobic block contains glycidyl methacrylate (GMA) units that are distanced by poly(acrylonitrile) (PAN) segments to fabricate a proton exchange membrane (PEM). This diblock copolymer also known as ionomer due to the hydrophilic block comprising 3-sulfopropyl methacrylate potassium salt (SPM) block. The diblock copolymer was synthesized in the one-pot atom transfer radical polymerization (ATRP) synthesis. Subsequently, the membrane was fabricated by means of solution casting in which an organic diamine, e.g., ethylene diamine (EDA), was introduced to crosslink the diblock copolymer chains via the addition of amine to the epoxide group of GMA. As a result, the PEM attained possesses dual continuous phases, in which the hydrophobic domains are either agglomerated or bridged by the EDA-derived crosslinks, whereas the hydrophilic domains constitute the primary proton conducting channels. The in-situ crosslinking hydrophobic block by using a hydrophilic cross-linker represents the merit aspect since it leads to both improved proton conductivity and dimensional stability in alcohol fuel. To characterize the above properties, Nafion® 117 and random copolymer of P(AN-co-GMA-co-SPM) were used as control samples. The PEM with the optimized composition demonstrates slightly better fuel cell performance than Nafion 117. Lastly, this diblock ionomer is nonfluorinated and hence favors lowering down both material and environmental costs.

11.
Nature ; 585(7823): 141-145, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641835

RESUMEN

The transient receptor potential ion channel TRPA1 is expressed by primary afferent nerve fibres, in which it functions as a low-threshold sensor for structurally diverse electrophilic irritants, including small volatile environmental toxicants and endogenous algogenic lipids1. TRPA1 is also a 'receptor-operated' channel whose activation downstream of metabotropic receptors elicits inflammatory pain or itch, making it an attractive target for novel analgesic therapies2. However, the mechanisms by which TRPA1 recognizes and responds to electrophiles or cytoplasmic second messengers remain unknown. Here we use strutural studies and electrophysiology to show that electrophiles act through a two-step process in which modification of a highly reactive cysteine residue (C621) promotes reorientation of a cytoplasmic loop to enhance nucleophilicity and modification of a nearby cysteine (C665), thereby stabilizing the loop in an activating configuration. These actions modulate two restrictions controlling ion permeation, including widening of the selectivity filter to enhance calcium permeability and opening of a canonical gate at the cytoplasmic end of the pore. We propose a model to explain functional coupling between electrophile action and these control points. We also characterize a calcium-binding pocket that is highly conserved across TRP channel subtypes and accounts for all aspects of calcium-dependent TRPA1 regulation, including potentiation, desensitization and activation by metabotropic receptors. These findings provide a structural framework for understanding how a broad-spectrum irritant receptor is controlled by endogenous and exogenous agents that elicit or exacerbate pain and itch.


Asunto(s)
Calcio/metabolismo , Calcio/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/metabolismo , Secuencia de Aminoácidos , Cisteína/metabolismo , Conductividad Eléctrica , Humanos , Yodoacetamida/farmacología , Modelos Moleculares , Mutación , Oximas/farmacología , Canal Catiónico TRPA1/genética
12.
Science ; 365(6460): 1434-1440, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31488702

RESUMEN

The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary detector of environmental cold and an important target for treating pathological cold hypersensitivity. Here, we present cryo-electron microscopy structures of TRPM8 in ligand-free, antagonist-bound, or calcium-bound forms, revealing how robust conformational changes give rise to two nonconducting states, closed and desensitized. We describe a malleable ligand-binding pocket that accommodates drugs of diverse chemical structures, and we delineate the ion permeation pathway, including the contribution of lipids to pore architecture. Furthermore, we show that direct calcium binding mediates stimulus-evoked desensitization, clarifying this important mechanism of sensory adaptation. We observe large rearrangements within the S4-S5 linker that reposition the S1-S4 and pore domains relative to the TRP helix, leading us to propose a distinct model for modulation of TRPM8 and possibly other TRP channels.


Asunto(s)
Frío , Canales Catiónicos TRPM/química , Secuencia de Aminoácidos , Animales , Aves , Calcio/química , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia
13.
Cell ; 178(6): 1362-1374.e16, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447178

RESUMEN

TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.


Asunto(s)
Venenos de Escorpión/farmacología , Canal Catiónico TRPA1/metabolismo , Animales , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Escorpiones/metabolismo
14.
Curr Opin Struct Biol ; 58: 259-268, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31279500

RESUMEN

Advances in electron microscopes, detectors and data processing algorithms have greatly facilitated the structural determination of many challenging integral membrane proteins that have been evasive to crystallization. These breakthroughs facilitate the application and development of various membrane protein solubilization approaches for structural studies, including reconstitution into lipid nanoparticles. In this review, we discuss various approaches for preparing transmembrane proteins for structural determination with single-particle electron cryo microscopy (cryoEM).


Asunto(s)
Microscopía por Crioelectrón/métodos , Proteínas de la Membrana/química , Membranas Artificiales
15.
Proc Natl Acad Sci U S A ; 116(18): 8869-8878, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975749

RESUMEN

TRPV5 (transient receptor potential vanilloid 5) is a unique calcium-selective TRP channel essential for calcium homeostasis. Unlike other TRPV channels, TRPV5 and its close homolog, TRPV6, do not exhibit thermosensitivity or ligand-dependent activation but are constitutively open at physiological membrane potentials and modulated by calmodulin (CaM) in a calcium-dependent manner. Here we report high-resolution electron cryomicroscopy structures of truncated and full-length TRPV5 in lipid nanodiscs, as well as of a TRPV5 W583A mutant and TRPV5 in complex with CaM. These structures highlight the mechanism of calcium regulation and reveal a flexible stoichiometry of CaM binding to TRPV5.


Asunto(s)
Canales Catiónicos TRPV/fisiología , Canales Catiónicos TRPV/ultraestructura , Animales , Calcio/metabolismo , Radioisótopos de Calcio , Clonación Molecular , Microscopía por Crioelectrón , Modelos Químicos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Conejos , Canales Catiónicos TRPV/clasificación , Canales Catiónicos TRPV/genética
16.
Proc Natl Acad Sci U S A ; 115(51): E12091-E12100, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30463955

RESUMEN

Atopic dermatitis (AD) is the most common skin disease in children. It is characterized by relapsing inflammation, skin-barrier defects, and intractable itch. However, the pathophysiology of itch in AD remains enigmatic. Here, we examine the contribution of Tmem79, an orphan transmembrane protein linked to AD in both mice and humans. We show that Tmem79 is expressed by both keratinocytes and sensory neurons, but that loss of keratinocytic Tmem79 is sufficient to elicit robust scratching. Tmem79-/- mice demonstrate an accumulation of dermal mast cells, which are diminished following chronic treatment with cyclooxygenase inhibitors and an EP3 receptor antagonist. In Tmem79-/- mice, mast cell degranulation produces histaminergic itch in a histamine receptor 1/histamine receptor 4 (H4R/H1R)-dependent manner that may involve activation of TRPV1- afferents. TMEM79 has limited sequence homology to a family of microsomal glutathione transferases and confers protection from cellular accumulation of damaging reactive species, and may thus play a role in regulating oxidative stress. In any case, mechanistic insights from this model suggest that therapeutics targeting PGE2 and/or H1R/H4R histaminergic signaling pathways may represent useful avenues to treat Tmem79-associated AD itch. Our findings suggest that individuals with mutations in Tmem79 develop AD due to the loss of protection from oxidative stress.


Asunto(s)
Dermatitis Atópica/genética , Proteínas de la Membrana/fisiología , Prurito/genética , Animales , Eliminación de Gen , Células HEK293 , Humanos , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Estrés Oxidativo/genética , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
17.
Nature ; 558(7708): 122-126, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29849147

RESUMEN

Ancient cartilaginous vertebrates, such as sharks, skates and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1-4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics 5 . Here we analyse shark and skate electrosensory cells to determine whether discrete physiological properties could contribute to behaviourally relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but use distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. By contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks compared with selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit the lifestyle or environmental niche of an animal through discrete molecular and biophysical modifications.


Asunto(s)
Órgano Eléctrico/fisiología , Tiburones/fisiología , Rajidae/fisiología , Animales , Conductividad Eléctrica , Órgano Eléctrico/citología , Femenino , Humanos , Cinética , Masculino , Potasio/metabolismo
18.
Eur Respir J ; 51(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29386343

RESUMEN

Chronic obstructive pulmonary disease (COPD) causes substantial burden of disease in developed countries, but there are limited data from Africa. We aimed to estimate the prevalence of COPD in Tanzania and identify the risk factors associated with it.This was a cross-sectional descriptive survey involving adults aged ≥35 years. We collected data on symptoms and risk factors using the Burden of Obstructive Lung Diseases questionnaire. Spirometry was performed and COPD diagnosed based on post-bronchodilator forced expiratory volume in 1 s/forced vital capacity <70%. We also measured indoor and outdoor carbon monoxide (CO) levels.A total of 869 participants (49.1% females) completed the questionnaires. Of these, 57.1% completed post-bronchodilator spirometry. Of the 25.2% ever-smokers, only 5.4% were current smokers. COPD prevalence was estimated at 17.5% (21.7% in males and 12.9% in females). COPD was associated with a history of cough, phlegm production and wheezing. 51.7% of COPD patients reported cough and 85% had mild to moderate airway limitation. Females had a higher rate of exacerbation. Pulmonary tuberculosis (TB) was reported in 10% of patients. Only 1.7% of patients who were diagnosed as COPD had ever received any medication, with only one female COPD patient having received an inhaler. 99.5% of the population used biomass fuels for cooking. The majority of households had CO levels up to 20 ppm.The prevalence of COPD in Tanzania is high, with a peak at a relatively young age and a preponderance in males. A history of TB, cigarette smoking and male sex are important risk factors. Indoor air pollution coupled with use of biomass fuel for cooking and heating may be an important risk factor for developing COPD in rural Tanzania. However, these factors need to be studied further.


Asunto(s)
Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Adulto , Distribución por Edad , Contaminación del Aire Interior/efectos adversos , Fumar Cigarrillos/efectos adversos , Tos/etiología , Estudios Transversales , Femenino , Volumen Espiratorio Forzado , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Prevalencia , Ruidos Respiratorios/etiología , Factores de Riesgo , Distribución por Sexo , Encuestas y Cuestionarios , Tanzanía/epidemiología , Tuberculosis Pulmonar/complicaciones , Capacidad Vital
19.
Science ; 359(6372): 228-232, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29217581

RESUMEN

Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.


Asunto(s)
Canales Catiónicos TRPM/química , Sitios de Unión , Calcio/química , Calcio/metabolismo , Microscopía por Crioelectrón , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos , Modelos Moleculares , Nanoestructuras , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/ultraestructura
20.
Proc Natl Acad Sci U S A ; 114(26): 6836-6841, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607094

RESUMEN

The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.


Asunto(s)
Acetamidas/farmacología , Activación del Canal Iónico/efectos de los fármacos , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Venenos de Araña/farmacología , Arañas/química , Tiazoles/farmacología , Animales , Humanos , Activación del Canal Iónico/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Dominios Proteicos , Venenos de Araña/química , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...